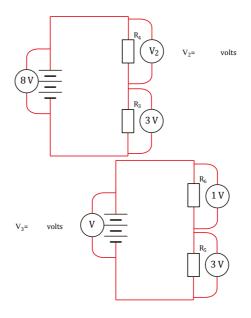
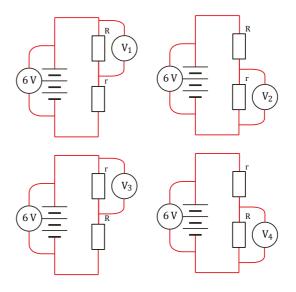

Each of these circuits consists of a battery connected to two resistors in series. The two resistors in each circuit are


All the meters in the circuits are voltmeters. The readings on some of the voltmeters are shown.
Write down the reading you would expect to see on the other

How confident are you that your answers to this question are correct?

Tick ONE box ()√


resistors in series.	(a) What is the reading on voltmeter V_1 ? Tick ONE box (\checkmark		
The resistance of \mathbf{R}_1 is bigger than the resistance of R $_2$	6 V		
	between 6 V and 3 V		
R ₁	3 V		
	between 3 V and zero		
(6V)=			
R ₂	(b) How would you explain this? Tick ONE box ()		
Ļ	The battery p.d. is shared, half across each resistor.		
Note: $ R_{\rm t} {\rm has\ a\ bigger\ resistance\ than\ R} \ {}_{\rm s} $	The battery p.d. is shared, with the larger share across the first resistor the current comes to.		
How confident are you that your answers to this	The battery p.d. is shared, with the larger share across the smaller resistor.		
question are correct? Tick ONE box (Ƴ	The battery p.d. is shared, with the larger share across the larger resistor.		
Very confident Fairly confident Not confident Just guessing	The p.d. across each resistor must be equal to the		

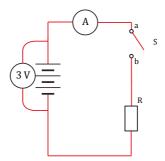
In each of these circuits, the resistor R has a large resistance and the resistor r has a small resistance.


For each circuit, say what you think the reading on the voltmeter will be, by writing one of the letters A-E in the box, as follows:

exactly 6 V

В	slightly less than 6 V		
C	exactly 3 V		
D	slightly above 0 V		
E	exactly 0 V		
Read	ding on voltmeter V_1 :		
Read	ding on voltmeter V_2 :		
Read	ding on voltmeter V_3 :		
Read	ding on voltmeter V_4 :		
ques	confident are you tha tion are correct? ONE box ()	t your answers	s to this
Very co	onfident Fairly confident	Not confident	Just guessing

The switch is closed. The ammeter reads $100\ mA$.



What is the voltage between a and b? $___$ volt

How confident are you that your answers to this question are correct? Tick ONE box ().

Very confident	Fairly confident	Not confident	Just guessing

(b) The switch S is then opened. The voltmeter across the battery still reads 3 $\mbox{\ensuremath{V}}.$

What is the reading on the ammeter now? _____ ampere

What is the voltage between a and b now? _____ volt

Answers to the questions

Question 1

The battery potential difference is shared between two resistors connected in series: V_1 is 4 volt; V_2 is 5 volt; V_3 is 4 volt.

Question 2

The potential difference across the resistors connected in series is in proportion to their resistance (big resistance: big potential difference). V_1 is between 3 volt and 6 volt: the larger share across the larger resistor.

Question 3

Same reasoning as question 2: V_1 is B; V_2 is D; V_3 is D; V_4 is B.

Question 4

The potential difference between a and b is zero because there is no resistance between these points, and the potential difference across R is 3 volt. With the switch open, the ammeter reads zero and the voltage between a and b is now 3 volt (The voltmeter is in effect measuring the potential difference across the supply).